Kullback-Leibler Divergence for Nonnegative Matrix Factorization
نویسندگان
چکیده
The I-divergence or unnormalized generalization of KullbackLeibler (KL) divergence is commonly used in Nonnegative Matrix Factorization (NMF). This divergence has the drawback that its gradients with respect to the factorizing matrices depend heavily on the scales of the matrices, and learning the scales in gradient-descent optimization may require many iterations. This is often handled by explicit normalization of one of the matrices, but this step may actually increase the Idivergence and is not included in the NMF monotonicity proof. A simple remedy that we study here is to normalize the input data. Such normalization allows the replacement of the I-divergence with the original KLdivergence for NMF and its variants. We show that using KL-divergence takes the normalization structure into account in a very natural way and brings improvements for nonnegative matrix factorizations: the gradients of the normalized KL-divergence are well-scaled and thus lead to a new projected gradient method for NMF which runs faster or yields better approximation than three other widely used NMF algorithms.
منابع مشابه
Nonnegative Matrix Factorization without Nonnegativity Constraints on the Factors
Abstract. We consider a new kind of low rank matrix approximation problem for nonnegative matrices: given a nonnegative matrix M , approximate it with a low rank product V.H such that V.H is nonnegative, but without nonnegativity constraints on V and H separately. The nonnegativity constraint on V.H is natural when using the Kullback-Leibler divergence as optimality criterion. We propose an ite...
متن کاملOnline Blind Separation of Dependent Sources Using Nonnegative Matrix Factorization Based on KL Divergence
This paper proposes a novel online algorithm for nonnegative matrix factorization (NMF) based on the generalized Kullback-Leibler (KL) divergence criterion, aimed to overcome the high computation problem of large-scale data brought about by conventional batch NMF algorithms. It features stable updating the factors alternately for each new-coming observation, and provides an efficient solution f...
متن کاملProjective Nonnegative Matrix Factorization with α-Divergence
A new matrix factorization algorithm which combines two recently proposed nonnegative learning techniques is presented. Our new algorithm, α-PNMF, inherits the advantages of Projective Nonnegative Matrix Factorization (PNMF) for learning a highly orthogonal factor matrix. When the Kullback-Leibler (KL) divergence is generalized to αdivergence, it gives our method more flexibility in approximati...
متن کاملSparse Super Symmetric Tensor Factorization
In the paper we derive and discuss a wide class of algorithms for 3D Super-symmetric nonnegative Tensor Factorization (SNTF) or nonnegative symmetric PARAFAC, and as a special case: Symmetric Nonnegative Matrix Factorization (SNMF) that have many potential applications, including multi-way clustering, feature extraction, multisensory or multi-dimensional data analysis, and nonnegative neural sp...
متن کاملNon-negative matrix factorization for visual coding
This paper combines linear sparse coding and nonnegative matrix factorization into sparse non-negative matrix factorization. In contrast to non-negative matrix factorization, the new model can leam much sparser representation via imposing sparseness constraints explicitly; in contrast to a close model non-negative sparse coding, the new model can learn parts-based representation via fully multi...
متن کامل