Kullback-Leibler Divergence for Nonnegative Matrix Factorization

نویسندگان

  • Zhirong Yang
  • He Zhang
  • Zhijian Yuan
  • Erkki Oja
چکیده

The I-divergence or unnormalized generalization of KullbackLeibler (KL) divergence is commonly used in Nonnegative Matrix Factorization (NMF). This divergence has the drawback that its gradients with respect to the factorizing matrices depend heavily on the scales of the matrices, and learning the scales in gradient-descent optimization may require many iterations. This is often handled by explicit normalization of one of the matrices, but this step may actually increase the Idivergence and is not included in the NMF monotonicity proof. A simple remedy that we study here is to normalize the input data. Such normalization allows the replacement of the I-divergence with the original KLdivergence for NMF and its variants. We show that using KL-divergence takes the normalization structure into account in a very natural way and brings improvements for nonnegative matrix factorizations: the gradients of the normalized KL-divergence are well-scaled and thus lead to a new projected gradient method for NMF which runs faster or yields better approximation than three other widely used NMF algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonnegative Matrix Factorization without Nonnegativity Constraints on the Factors

Abstract. We consider a new kind of low rank matrix approximation problem for nonnegative matrices: given a nonnegative matrix M , approximate it with a low rank product V.H such that V.H is nonnegative, but without nonnegativity constraints on V and H separately. The nonnegativity constraint on V.H is natural when using the Kullback-Leibler divergence as optimality criterion. We propose an ite...

متن کامل

Online Blind Separation of Dependent Sources Using Nonnegative Matrix Factorization Based on KL Divergence

This paper proposes a novel online algorithm for nonnegative matrix factorization (NMF) based on the generalized Kullback-Leibler (KL) divergence criterion, aimed to overcome the high computation problem of large-scale data brought about by conventional batch NMF algorithms. It features stable updating the factors alternately for each new-coming observation, and provides an efficient solution f...

متن کامل

Projective Nonnegative Matrix Factorization with α-Divergence

A new matrix factorization algorithm which combines two recently proposed nonnegative learning techniques is presented. Our new algorithm, α-PNMF, inherits the advantages of Projective Nonnegative Matrix Factorization (PNMF) for learning a highly orthogonal factor matrix. When the Kullback-Leibler (KL) divergence is generalized to αdivergence, it gives our method more flexibility in approximati...

متن کامل

Sparse Super Symmetric Tensor Factorization

In the paper we derive and discuss a wide class of algorithms for 3D Super-symmetric nonnegative Tensor Factorization (SNTF) or nonnegative symmetric PARAFAC, and as a special case: Symmetric Nonnegative Matrix Factorization (SNMF) that have many potential applications, including multi-way clustering, feature extraction, multisensory or multi-dimensional data analysis, and nonnegative neural sp...

متن کامل

Non-negative matrix factorization for visual coding

This paper combines linear sparse coding and nonnegative matrix factorization into sparse non-negative matrix factorization. In contrast to non-negative matrix factorization, the new model can leam much sparser representation via imposing sparseness constraints explicitly; in contrast to a close model non-negative sparse coding, the new model can learn parts-based representation via fully multi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011